Control of Hoxd genes' collinearity during early limb development.

نویسندگان

  • Basile Tarchini
  • Denis Duboule
چکیده

Hoxd genes are essential for limb growth and patterning. They are activated following a complex transcriptional regulation, leading to expression domains that are collinear in both space and time. To understand the mechanism(s) underlying collinearity, we produced and analyzed a set of mouse strains containing systematic deletions and duplications within the HoxD cluster. We show that two waves of transcriptional activation, controlled by different mechanisms, generate the observed developmental expression patterns. The first wave is time-dependent, involves the action of opposite regulatory modules, and is essential for the growth and polarity of the limb up to the forearm. The second phase involves a different regulation and is required for the morphogenesis of digits. We propose that these two phases reflect the different phylogenetic histories of proximal versus distal limb structures and discuss the biological relevance of these collinear patterns, particularly for the origin of the anterior-to-posterior limb polarity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hox genes and growth: early and late roles in limb bud morphogenesis.

In recent years, molecular analysis has led to the identification of some of the key genes that control the morphogenesis of the developing embryo. Detailed functional analysis of these genes is rapidly leading to a new level of understanding of how embryonic form is regulated. Understanding the roles that these genes play in development can additionally provide insights into the evolution of m...

متن کامل

Anterior-posterior differences in HoxD chromatin topology in limb development.

A late phase of HoxD activation is crucial for the patterning and growth of distal structures across the anterior-posterior (A-P) limb axis of mammals. Polycomb complexes and chromatin compaction have been shown to regulate Hox loci along the main body axis in embryonic development, but the extent to which they have a role in limb-specific HoxD expression, an evolutionary adaptation defined by ...

متن کامل

Uncoupling Time and Space in the Collinear Regulation of Hox Genes

During development of the vertebrate body axis, Hox genes are transcribed sequentially, in both time and space, following their relative positions within their genomic clusters. Analyses of animal genomes support the idea that Hox gene clustering is essential for coordinating the various times of gene activations. However, the eventual collinear ordering of the gene specific transcript domains ...

متن کامل

Ulnaless (Ul), a regulatory mutation inducing both loss-of-function and gain-of-function of posterior Hoxd genes.

Ulnaless (Ul), an X-ray-induced dominant mutation in mice, severely disrupts development of forearms and forelegs. The mutation maps on chromosome 2, tightly linked to the HoxD complex, a cluster of regulatory genes required for proper morphogenesis. In particular, 5'-located (posterior) Hoxd genes are involved in limb development and combined mutations within these genes result in severe alter...

متن کامل

The limb deformity mutation disrupts the SHH/FGF-4 feedback loop and regulation of 5' HoxD genes during limb pattern formation.

Mutations in the murine limb deformity (ld) gene disrupt differentiation of the Apical Ectodermal Ridge (AER) and patterning of distal limb structures. However, initial outgrowth of the limb bud is not affected, suggesting that early and late functions of the AER are uncoupled. Similarly, activation of the 5' members of the HoxD gene cluster (Hoxd-11 to Hoxd-13) is not affected in ld mutant pos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Developmental cell

دوره 10 1  شماره 

صفحات  -

تاریخ انتشار 2006